Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.966
Filtrar
1.
Arch Microbiol ; 206(5): 227, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642141

RESUMO

Bacillus thuringiensis (Bt) and Lysinibacillus sphaericus (Ls) are the most widely used microbial insecticides. Both encounter unfavorable environmental factors and pesticides in the field. Here, the responses of Bt and Ls spores to glutaraldehyde were characterized using Raman spectroscopy and differential interference contrast imaging at the single-cell level. Bt spores were more sensitive to glutaraldehyde than Ls spores under prolonged exposure: <1.0% of Bt spores were viable after 10 min of 0.5% (v/v) glutaraldehyde treatment, compared to ~ 20% of Ls spores. The Raman spectra of glutaraldehyde-treated Bt and Ls spores were almost identical to those of untreated spores; however, the germination process of individual spores was significantly altered. The time to onset of germination, the period of rapid Ca2+-2,6-pyridinedicarboxylic acid (CaDPA) release, and the period of cortex hydrolysis of treated Bt spores were significantly longer than those of untreated spores, with dodecylamine germination being particularly affected. Similarly, the germination of treated Ls spores was significantly prolonged, although the prolongation was less than that of Bt spores. Although the interiors of Bt and Ls spores were undamaged and CaDPA did not leak, proteins and structures involved in spore germination could be severely damaged, resulting in slower and significantly prolonged germination. This study provides insights into the impact of glutaraldehyde on bacterial spores at the single cell level and the variability in spore response to glutaraldehyde across species and populations.


Assuntos
Bacillaceae , Bacillus thuringiensis , Inseticidas , Esporos Bacterianos/fisiologia , Inseticidas/metabolismo , Glutaral/farmacologia , Glutaral/metabolismo , Bacillus subtilis/metabolismo
2.
J Contemp Dent Pract ; 25(1): 52-57, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38514431

RESUMO

AIM: The aim of this study was to assess the impact of Nd:YAG laser, glutaraldehyde-based desensitizer (GD), or their combination on occluding dentinal tubules. MATERIALS AND METHODS: Fifty dentin samples were obtained from non-carious human third molars and randomly divided into five groups (n = 10): (1) Control group treated with 37% phosphoric acid, (2) GD group, (3) Nd:YAG laser group (1064 nm, 100 µs, 10 Hz, 300 µm fiber, 1 W power, 100 mJ energy, and 85 J/cm2 energy density), (4) GD followed by Nd:YAG laser group, and (5) Nd:YAG laser followed by GD group. Scanning electron microscopy (SEM) was used to capture five images from each sample for analysis of dentinal tubules using Image J software. SEM/EDX elemental analysis was performed to determine the main mineral contents. Data analyzed using one-way ANOVA and Tukey's post hoc test for statistical comparisons. RESULTS: Laser and combination groups showed a significant decrease in dentinal tubule counts compared with the control and GD groups (p < 0.0001). There were no significant differences in open dentinal tubule counts between the control and GD groups, as well as between the laser and combination groups. However, significant differences were observed in the total area, average size of the tubules, and percentage area between the control group and the treatment groups (GD, laser, GD + laser, laser + GD). No significant difference was found in the Ca/P ratio between the tested groups. CONCLUSION: The use of Nd:YAG laser alone or in combination with GD was more effective in occluding dentinal tubules compared to GD alone. CLINICAL SIGNIFICANCE: This study has shown that Nd:YAG laser alone and in combination with GD has superior dentinal tubule occlusion in vitro. Its clinical use in the treatment of dentinal hypersensitivity may overcome the drawback of conventional treatment approaches for dentin hypersensitivity needing repeated applications to achieve continuous relief from pain since acidic diet and toothbrushing result in the continuing elimination of precipitates and surface coatings. How to cite this article: Alzarooni AH, El-Damanhoury HM, Aravind SS, et al. Combined Effects of Glutaraldehyde-based Desensitizer and Nd: YAG Laser on Dentinal Tubules Occlusion. J Contemp Dent Pract 2024;25(1):52-57.


Assuntos
Sensibilidade da Dentina , Lasers de Estado Sólido , Humanos , Lasers de Estado Sólido/uso terapêutico , Dentina , Sensibilidade da Dentina/tratamento farmacológico , Glutaral/farmacologia , Glutaral/uso terapêutico , Dente Serotino , Microscopia Eletrônica de Varredura
3.
Biochem Biophys Res Commun ; 702: 149567, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38335701

RESUMO

Glutaraldehyde (GA) is a protein crosslinker widely used in biochemical and pharmaceutical research because it can rapidly stabilize and immobilize substrates via amine group interactions. However, controlling GA crosslinking is challenging owing to its swift reactivity and the influence of various solution conditions, such as pH and concentrations of the substrate and crosslinker. Although extensive research has focused on GA cross-linking mechanisms, studies on quenching, which is critical for preventing non-specific aggregation during prolonged storage, remain sparse. This study examines the quenching efficiency of a combined amino acid mixture of glycine, histidine, and lysine, which are commonly used as individual quenchers. Our findings, confirmed using sodium dodecyl sulphate-polyacrylamide gel electrophoresis, demonstrate that this amino acid blend offers superior quenching compared to single amino acids, enhancing quenching activity across a wide pH spectrum. These results provide a novel approach for mitigating the high reactivity of GA with implications for improving sample preservation and stabilization in a range of biochemical applications, including microscopy and cell fixation.


Assuntos
Histidina , Lisina , Glutaral/química , Glutaral/farmacologia , Reagentes de Ligações Cruzadas/química , Glicina
4.
Tissue Eng Regen Med ; 21(2): 243-260, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37865625

RESUMO

BACKGROUND: Diabetic foot ulcer (DFU) is a major debilitating complication of diabetes. The lack of effective diabetic wound dressings has been a significant problem in DFU management. In this study, we aim to establish a phlorotannin-incorporated nanofibre system and determine its potential in accelerating hyperglycaemic wound healing. METHODS: The effective dose of Ecklonia cava phlorotannins (ECP) for hyperglycaemic wound healing was determined prior to phlorotannin nanofibre fabrication using polyvinyl-alcohol (PVA), polyvinylpyrrolidone (PVP), and ECP. Vapour glutaraldehyde was used for crosslinking of the PVA/PVP nanofibres. The phlorotannin nanofibres were characterised, and their safety and cytocompatibility were validated. Next, the wound healing effect of phlorotannin nanofibres was determined with 2D wound scratch assay, whereas immunofluorescence staining of Collagen-I (Col-I) and Cytokeratin-14 (CK-14) was performed in human dermal fibroblasts (HDF) and human epidermal keratinocytes (HEK), respectively. RESULTS: Our results demonstrated that 0.01 µg/mL ECP significantly improved hyperglycaemic wound healing without compromising cell viability and proliferation. Among all nanofibres, PVA/PVP/0.01 wt% ECP nanofibres exhibited the best hyperglycaemic wound healing effect. They displayed a diameter of 334.7 ± 10.1 nm, a porosity of 40.7 ± 3.3%, and a WVTR of 1718.1 ± 32.3 g/m2/day. Besides, the FTIR spectra and phlorotannin release profile validated the successful vapour glutaraldehyde crosslinking and ECP incorporation. We also demonstrated the potential of phlorotannin nanofibres as a non-cytotoxic wound dressing as they support the viability and proliferation of both HDF and HEK. Furthermore, phlorotannin nanofibres significantly ameliorated the impaired hyperglycaemic wound healing and restored the hyperglycaemic-induced Col-I reduction in HDF. CONCLUSION: Taken together, our findings show that phlorotannin nanofibres have the potential to be used as a diabetic wound dressing.


Assuntos
Diabetes Mellitus , Hiperglicemia , Nanofibras , Humanos , Glutaral/farmacologia , Cicatrização , Diabetes Mellitus/tratamento farmacológico , Colágeno Tipo I
5.
Vet Pathol ; 61(2): 201-206, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37698272

RESUMO

The SARS-CoV-2 pandemic required the immediate need to transfer inactivated tissue from biosafety level (BSL)-3 to BSL-1 areas to enable downstream analytical methods. No validated SARS-CoV-2 inactivation protocols were available for either formaldehyde (FA)-fixed or glutaraldehyde (GA)-fixed tissues. Therefore, representative tissue from ferrets and hamsters was spiked with 2.2 × 106 tissue culture infectious dose 50% per ml (TCID50/ml) SARS-CoV-2 or were obtained from mice experimentally infected with SARS-CoV-2. SARS-CoV-2 inactivation was demonstrated with 4% FA or 5% GA at room temperature for 72 hours by a titer reduction of up to 103.8 TCID50/ml in different animal tissues with a maximum protein content of 100 µg/mg and a thickness of up to 10 mm for FA and 8 mm for GA. Our protocols can be easily adapted for validating the inactivation of other pathogens to allow for the transfer of biological samples from BSL-3 areas to BSL-1 laboratories.


Assuntos
COVID-19 , Animais , Camundongos , Animais de Laboratório , Contenção de Riscos Biológicos/veterinária , COVID-19/veterinária , Furões , Formaldeído/farmacologia , Glutaral/farmacologia , Laboratórios , SARS-CoV-2 , Inativação de Vírus
6.
J Endod ; 49(12): 1634-1640, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37793567

RESUMO

INTRODUCTION: This laboratory study aimed to evaluate the effect of trans-cinnamaldehyde (TC) conditioning on dentin tissue stabilization, bacterial adhesion, and stem cell toxicity. METHODS: Dentin beams (n = 204) from extracted human molars were demineralized in phosphoric acid and treated with TC (2.5, 5, and 7.5%), 50% ethanol-water mixture (vehicle control) or 2.5% glutaraldehyde (GA) (positive control) for 30 minutes. Demineralized but untreated specimens served as the negative control. After treatment, collagen crosslinking was characterized by measuring the elastic modulus (Er) and hardness (n = 5). Biodegradation resistance was examined by determining the loss of dry mass (n = 8), hydroxyproline release (n = 4) and scanning electron microscopy (n = 2), after exposure to bacterial collagenase. Inhibition of bacterial adhesion was investigated by colony counting assay (n = 12) and scanning electron microscopy (n = 2). Viability of stem cells of the apical papilla on TC-conditioned dentin was determined using the Cell Counting Kit-8 assay (n = 8). Data were statistically analyzed using one-way analysis of variance (ANOVA) test followed by Dunnett's multiple comparisons at a significance level of 5%. RESULTS: TC-conditioned dentin showed a concentration-dependent increase in Er and hardness. The Er and hardness of 5% and 7.5% TC-conditioned dentin were significantly greater than that of the negative control and vehicle control groups (P < .05). There was no significant difference in the biodegradation resistance between GA and 5% TC-conditioned dentin (P > .05). TC-conditioned dentin showed a well-preserved collagen fibril network with clear cross-banding, comparable to GA-conditioned dentin. All concentrations of TC inhibited bacterial adhesion on dentin, significantly greater than the negative control (P < .05). There was no reduction in viability of stem cells of the apical papilla viability on TC-conditioned dentin compared to the negative control (P > .05). CONCLUSIONS: TC conditioning stabilized the dentin and protected it from enzymatic degradation. TC prevented bacterial adhesion on the dentin but maintained stem cell viability.


Assuntos
Aderência Bacteriana , Colágeno , Humanos , Sobrevivência Celular , Colágeno/metabolismo , Glutaral/metabolismo , Glutaral/farmacologia , Dentina/metabolismo , Células-Tronco/metabolismo
7.
PLoS One ; 18(8): e0289677, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37540691

RESUMO

INTRODUCTION: Extensive scar tissue formation after peripheral nerve injury or surgery is a common problem. To avoid perineural scarring, implanting a mechanical barrier protecting the nerve from inflammation processes in the perineural environment has shown promising results for functional recovery. This study investigates the potential of an acellular collagen-elastin matrix wrapped around a peripheral nerve after induction of scar tissue formation. MATERIALS AND METHODS: In the present study, 30 Lewis rats were separated into three groups and sciatic nerve scarring was induced with 2.5% glutaraldehyde (GA-CM) or 2.5% glutaraldehyde with a supplemental FDA-approved acellular collagen-elastin matrix application (GA+CM). Additionally, a sham group was included for control. Nerve regeneration was assessed by functional analysis using the Visual Statisc Sciatic Index (SSI) and MR neurography during the 12-week regeneration period. Histological and histomorphometry analysis were performed to evaluate the degree of postoperative scar tissue formation. RESULTS: Histological analysis showed an extensive scar tissue formation for GA-CM. Connective tissue ratio was significantly (p < 0.009) reduced for GA+CM (1.347 ± 0.017) compared to GA-CM (1.518 ± 0.057). Similarly, compared to GA+CM, MR-Neurography revealed extensive scar tissue formation for GA-CM with a direct connection between nerve and paraneural environment. Distal to the injury site, quantitative analysis presented significantly higher axon density (p = 0.0145), thicker axon diameter (p = 0.0002) and thicker myelinated fiber thickness (p = 0.0008) for GA+CM compared to GA-CM. Evaluation of functional recovery revealed a significantly faster regeneration for GA+CM. CONCLUSION: The supplemental application of an acellular collagen-elastin matrix showed beneficial effects in histological, radiological, and functional analysis. Therefore, applying a collagen-elastin matrix around the nerve after peripheral nerve injury or surgery may have beneficial effects on preventing scar tissue formation in the long run. This represents a feasible approach to avoid scar tissue formation in peripheral nerve surgery.


Assuntos
Cicatriz , Traumatismos dos Nervos Periféricos , Ratos , Animais , Cicatriz/prevenção & controle , Cicatriz/patologia , Elastina , Ratos Sprague-Dawley , Traumatismos dos Nervos Periféricos/patologia , Glutaral/farmacologia , Ratos Endogâmicos Lew , Nervos Periféricos/patologia , Nervo Isquiático/lesões , Colágeno/farmacologia , Regeneração Nervosa/fisiologia
8.
Biomed Mater Eng ; 34(6): 561-575, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545206

RESUMO

BACKGROUND: Bovine pericardium (BP) is a scaffold widely used in soft tissues regeneration; however, its calcification in contact with glutaraldehyde, represent an opportunity for its application in hard tissues, such as bone in the oral cavity. OBJECTIVE: To develop and to characterize decellularized and glutaraldehyde-crosslinked bovine pericardium (GC-BP) as a potential scaffold for guided bone regeneration GBR. METHODS: BP samples from healthy animals of the bovine zebu breed were decellularized and crosslinked by digestion with detergents and glutaraldehyde respectively. The resulting cell-free scaffold was physical, chemical, mechanical, and biologically characterized thought hematoxylin and eosin staining, DNA quantification, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), uniaxial tensile test, cell viability and live and dead assay in cultures of dental pulp stem cells (DPSCs). RESULTS: The decellularization and crosslinking of BP appeared to induce conformational changes of the CLG molecules, which led to lower mechanical properties at the GC-BP scaffold, at the same time that promoted cell adhesion and viability of DPSCs. CONCLUSION: This study suggests that the decellularized and GC-BP is a scaffold with the potential to be used promoting DPSCs recruitment, which has a great impact on the dental area.


Assuntos
Calcificação Fisiológica , Pericárdio , Bovinos , Animais , Glutaral/análise , Glutaral/farmacologia , Adesão Celular , Tecidos Suporte/química
9.
J Dent ; 136: 104643, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524197

RESUMO

OBJECTIVES: To evaluate the influence of two glutaraldehyde-based desensitizers (L: GLUMA Desensitizer, Heraeus Kulzer and G: GLUMA Desensitizer PowerGel) prior to the adhesive procedures on microtensile bond strength (µTBS) to dentin and endogenous enzymatic activity. METHODS: Noncarious human third molars (N = 48) were cut to expose middle coronal dentin. Six experimental groups were formed according to the dentin pre-treatment (L or G) and the universal adhesives (IBU - iBond universal, Kulzer or AU - Adhese Universal, Ivoclar Vivadent) used in the self-etch mode (n = 8): 1) L/IBU; 2) G/IBU; 3) IBU; 4) L/AU; 5) G/AU; 6) AU. Specimens were cut into sticks and stressed until failure after 24 h (T0) or 1 yr of aging (T12). Additional 4 teeth were used for in situ zymography evaluation and data were statistically analyzed (α = 0.05). RESULTS: Dentin pre-treatment, adhesive and aging statistically influenced bond strength and enzymatic activity (P<0.001). AU demonstrated higher bond strength values than IBU (P<0.001). The L resulted in higher bond strength compared to the G and control groups (P<0.001). aging statistically influenced bonding performance, especially when no dentin pre-treatment was performed (P<0.001). In situ zymography revealed that at baseline the control groups exhibited lower interfacial fluorescence compared to the experimental groups, irrespective of the adhesive used (P<0,001). However, after 1 yr of artificial storage, no differences were found among the groups (P>0.05). CONCLUSIONS: Glutharldeadeyde-based products increased bond strength and determined a stabilization of the adhesive interface over time apparently not related to the MMPs inhibition. CLINICAL SIGNIFICANCE: The results of this in vitro study suggest that the application of glutaraldehyde-based desensitizers prior to the adhesive procedures when associated with universal adhesives could result in increased bond strength and stabilization of the adhesive interface over time.


Assuntos
Colagem Dentária , Cimentos Dentários , Humanos , Cimentos Dentários/farmacologia , Glutaral/farmacologia , Adesivos Dentinários/química , Cimentos de Resina/química , Teste de Materiais , Resistência à Tração , Adesivos
10.
Photobiomodul Photomed Laser Surg ; 41(7): 350-357, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37384905

RESUMO

Objective: The current study was carried out to evaluate the effects of laser and Systemp.desensitizer therapy. Further, scanning electron microscopy (SEM) was used to determine the effects of individual or combined desensitizers on human dentinal tubules. Background: The most common clinical condition that makes people uncomfortable is dentin hypersensitivity (DH). Both lasers and drugs that reduce sensitivity have been used to treat DH. Materials and methods: A total of 100 dentinal samples were taken from newly extracted third molars (affected) and divided into 10 groups (A to J), that is, control (A); Systemp.desensitizer (B); diode laser (980 nm) (C); Nd:YAG laser (D); Er:YAG laser (E); Er,Cr:YSGG laser (F); Systemp.desensitizer + diode laser (G); Systemp.desensitizer + Nd:YAG laser (H); Systemp.desensitizer + Er:YAG laser (I); and Systemp.desensitizer + Er,Cr:YSGG laser (J). SEM was used to evaluate the dentinal specimens in each group (longitudinal and transverse portions), and then images of each sample were captured (20 images/sample). In addition, the number of open dentinal tubules was counted and then the occlusion depth in dentinal tubules was measured. Mann-Whitney and Kruskal-Wallis tests were employed to analyze the obtained data. Results: All treatment procedures and protocols were effective in blocking dentinal tubules (p < 0.05). Compared with the other groups, dentinal tubules in the laser and laser combination therapy groups were significantly obstructed (p < 0.05). Diode and Nd:YAG lasers with or without Systemp.desensitizer showed significantly more tubule occlusion and greater sealing depth than Er:YAG and Er,Cr:YSGG lasers with or without Systemp.desensitizer (p < 0.05). Conclusions: In summary, lasers alone or in combination can play a significant role in occluding the dentinal tubules. However, combining the diode or Nd:YAG laser with Systemp.desensitizers is a more effective treatment strategy and may have immediate and long-lasting effects.


Assuntos
Dentina , Lasers de Estado Sólido , Humanos , Microscopia Eletrônica de Varredura , Glutaral/farmacologia , Lasers de Estado Sólido/uso terapêutico
11.
BMC Oral Health ; 23(1): 379, 2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301954

RESUMO

BACKGROUND/OBJECTIVE: Disinfection of a 3D-printed surgical guide is of utmost importance as it comes into contact with hard and soft tissue during implant placement so it poses a potential risk of pathogenic transmission. Methods used for disinfection in the surgical field should be reliable, practical, and safe for the instruments and the patients. The objectives of this study were to compare the antimicrobial potential of 100% Virgin Coconut Oil, 2% Glutaraldehyde, and 70% Ethyl Alcohol used to decontaminate 3D-printed surgical guides. MATERIALS AND METHODS: Thirty identical surgical guides were printed and cut into two halves (N = 60). Both halves were then contaminated with a defined amount of human saliva samples (2 ml). The first half (n = 30) was sub-grouped into three study groups which were immersed in one of the three disinfectants for 20 min as follows; group VCO was immersed in 100% Virgin Coconut Oil, group GA was immersed in 2% Glutaraldehyde, and group EA was immersed in 70% Ethyl Alcohol. The second half (n* = 30) was sub-grouped into three control groups which were immersed in sterile distilled water as follows group VCO*, group GA*, and group EA*. The microbial count was expressed as colony-forming units per plate and the comparison of the antimicrobial potential of the three tested disinfectants between the three study and three control groups was done using the One-Way ANOVA test. RESULTS: The culture results of three study groups revealed no bacterial growth with the highest % of reduction in the mean microbial count of the oral microorganisms (about100%) and an uncountable bacterial growth was shown between the three control groups (more than 100 CFU/plate) representing the baseline of the oral microorganisms. Therefore; statistically significant differences were found between the three control and three study groups (P < .001). CONCLUSION: The antimicrobial potential of Virgin Coconut Oil was comparable and equivalent to Glutaraldehyde and Ethyl Alcohol with a significant inhibitory action against oral pathogens.


Assuntos
Anti-Infecciosos , Desinfetantes , Humanos , Desinfecção/métodos , Óleo de Coco/farmacologia , Glutaral/farmacologia , Etanol , 2-Propanol , Impressão Tridimensional , Desinfetantes/farmacologia
12.
Eur J Oral Sci ; 131(3): e12928, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36931874

RESUMO

In this study, the synergistic effect of glutaraldehyde-cross-linking and remineralization on the strength and durability of resin-dentin bonds was investigated. Dentin surfaces were etched with 35% phosphoric acid. The control specimens were bonded with Adper Single Bond 2 using wet bonding without pretreatment. The experimental specimens were pretreated with 5% (v/v) glutaraldehyde solution for 3 min and placed in a remineralizing solution for 0, 12, and 24 h, followed by dry bonding. After performing composite build-ups on the specimens, they were longitudinally sectioned, immediately, and after aging for 3 h with sodium hypochlorite (NaOCl), to evaluate microtensile bond strength (µTBS). The cross-linked specimens exhibited µTBS values comparable with those of the control group, but the µTBS decreased significantly after NaOCl aging. The cross-linked dentin remineralized for 24 h exhibited an increase in µTBS. After aging in NaOCl, the µTBS of the specimens remineralized for 24 h did not decrease and was significantly higher than for the other experimental groups. Cross-linking with dry bonding maintained µTBS in specimens before aging in NaOCl, but the bonding durability was compromised. Remineralization of cross-linked dentin for 24 h followed by dry bonding increased the immediate µTBS and improved bond durability. Therefore, combining cross-linking with remineralization of collagen fibrils progressively increased resistance to degradation, improving bond durability.


Assuntos
Colagem Dentária , Adesivos Dentinários , Adesivos Dentinários/química , Glutaral/farmacologia , Cimentos de Resina/química , Teste de Materiais , Colágeno , Dentina , Resistência à Tração
13.
Dent Med Probl ; 60(1): 79-86, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36989427

RESUMO

BACKGROUND: Advanced platelet-rich fibrin (A-PRF) is a biopolymer that releases growth factors to facilitate healing. Along with other barrier membranes, the A-PRF membrane has proven to be beneficial in guided tissue regeneration (GTR) treatment. The cross-linking of the A-PRF membrane with glutaraldehyde (GLUT) has been attempted previously, and has been shown to prolong its degradation time and improve its mechanical properties. In the present study, the effects of GLUT cross-linking on macroscopic changes in the A-PRF membrane were assessed, and microscopic features were analyzed using a light microscope and a scanning electron microscope (SEM). OBJECTIVES: The aim of the present study was to evaluate and compare the effects of GLUT cross-linking on the A-PRF membrane through the macroscopic, microscopic and SEM examinations. MATERIAL AND METHODS: A total of 18 human A-PRF membrane samples were prepared, half of which were treated with 0.1% GLUT, and the remaining were left untreated. The macroscopic measurements of the samples included weight, length and thickness, while specimen slides were prepared for light microscopic evaluation and SEM analysis. RESULTS: The GLUT cross-linked membranes weighed more and were thicker than the non-cross-linked membranes, but there was no change in length. Light microscopic images showed fewer cells at the head and tail, though cells were abundant in the body of the A-PRF membrane. The images acquired using SEM showed fibrin strands of greater thickness, but fewer interspersed cell bodies in the cross-linked membranes. CONCLUSIONS: This in vitro study revealed an increase in thickness and cross-linking fiber density along with the presence of viable cells in the GLUT-treated A-PRF membrane, which may prove its effectiveness in healing or serving as a barrier membrane in clinical trials.


Assuntos
Plaquetas , Fibrina Rica em Plaquetas , Humanos , Microscopia Eletrônica de Varredura , Glutaral/farmacologia , Elétrons
14.
Biomater Adv ; 147: 213328, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36764200

RESUMO

Hemocompatibility tuning was adopted to explore and refine an innovative, GA-free preparation strategy combining decellularization, riboflavin/UV crosslinking, and low-energy electron irradiation (SULEEI) procedure. A SULEEI-protocol was established to avoid GA-dependent deterioration that results in insufficient long-term aortic valve bioprosthesis durability. Final SULEEI-pericardium, intermediate steps and GA-fixed reference pericardium were exposed in vitro to fresh human whole blood to elucidate effects of preparation parameters on coagulation and inflammation activation and tissue histology. The riboflavin/UV crosslinking step showed to be less efficient in inactivating extracellular matrix (ECM) protein activity than the GA fixation, leading to tissue-factor mediated blood clotting. Intensifying the riboflavin/UV crosslinking with elevated riboflavin concentration and dextran caused an enhanced activation of the complement system. Yet activation processes induced by the previous protocol steps were quenched with the final electron beam treatment step. An optimized SULEEI protocol was developed using an intense and extended, trypsin-containing decellularization step to inactivate tissue factor and a dextran-free, low riboflavin, high UV crosslinking step. The innovative and improved GA-free SULEEI-preparation protocol results in low coagulant and low inflammatory bovine pericardium for surgical application.


Assuntos
Bioprótese , Próteses Valvulares Cardíacas , Animais , Bovinos , Humanos , Glutaral/metabolismo , Glutaral/farmacologia , Elétrons , Pericárdio/metabolismo , Pericárdio/patologia
15.
Acta Biomater ; 160: 45-58, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764592

RESUMO

Valvular heart disease is a major threat to human health and transcatheter heart valve replacement (THVR) has emerged as the primary treatment option for severe heart valve disease. Bioprosthetic heart valves (BHVs) with superior hemodynamic performance and compressibility have become the first choice for THVR, and more BHVs have been requested for clinical use in recent years. However, several drawbacks remain for the commercial BHVs cross-linked by glutaraldehyde, including calcification, thrombin, poor biocompatibility and difficulty in endothelialization, which would further reduce the BHVs' lifetime. This study developed a dual-functional non-glutaraldehyde crosslinking reagent OX-VI, which can provide BHV materials with reactive double bonds (CC) for further bio-function modification in addition to the crosslinking function. BHV material PBAF@OX-PP was developed from OX-VI treated porcine pericardium (PP) after the polymerization with 4-vinylbenzene boronic acid and the subsequent modification of poly (vinyl alcohol) and fucoidan. Based on the functional anti-coagulation and endothelialization strategy and dual-functional crosslinking reagent, PBAF@OX-PP has better anti-coagulation and anti-calcification properties, higher biocompatibility, and improved endothelial cells proliferation when compared to Glut-treated PP, as well as the satisfactory mechanical properties and enhanced resistance effect to enzymatic degradation, making it a promising candidate in the clinical application of BHVs. STATEMENT OF SIGNIFICANCE: Transcatheter heart valve replacement (THVR) has become the main solution for severe valvular heart disease. However, bioprosthetic heart valves (BHVs) used in THVR exhibit fatal drawbacks such as calcification, thrombin and difficulty for endothelialization, which are due to the glutaraldehyde crosslinking, resulting in a limited lifetime to 10-15 years. A new non-glutaraldehyde cross-linker OX-VI has been designed, which can not only show great crosslinking ability but also offer the BHVs with reactive double bonds (CC) for further bio-function modification. Based on the dual-functional crosslinking reagent OX-VI, a versatile modification strategy was developed and the BHV material (PBAF@OX-PP) has been developed and shows significantly enhanced anticoagulant, anti-calcification and endothelialization properties, making it a promising candidate in the clinical application of BHVs.


Assuntos
Bioprótese , Calcinose , Doenças das Valvas Cardíacas , Próteses Valvulares Cardíacas , Suínos , Animais , Humanos , Glutaral/farmacologia , Glutaral/química , Anticoagulantes/farmacologia , Células Endoteliais , Trombina , Valvas Cardíacas , Reagentes de Ligações Cruzadas/química
16.
PeerJ ; 11: e14868, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846444

RESUMO

Objective: To systematically evaluate the disinfection efficacy of the two most frequently used disinfectants, sodium hypochlorite and glutaraldehyde, and their effects on the surface properties of four different dental impression materials. Methods: A systematic literature search was performed in four databases until May 1st, 2022 to select the studies which evaluated disinfection efficacy of disinfectants or surface properties of dental impressions after chemical disinfection. Main results: A total of 50 studies were included through electronic database searches. Of these studies, 13 studies evaluated disinfection efficacy of two disinfectants, and 39 studies evaluated their effects on the surface properties of dental impressions. A 10-minute disinfection with 0.5-1% sodium hypochlorite or 2% glutaraldehyde was effective to inactivate oral flora and common oral pathogenic bacteria. With regard to surface properties, chemical disinfection within 30 min could not alter the dimensional stability, detail reproduction and wettability of alginate and polyether impressions. However, the wettability of addition silicone impressions and the dimensional stability of condensation silicone impressions were adversely affected after chemical disinfection, while other surface properties of these two dental impressions were out of significant influence. Conclusions: Alginate impressions are strongly recommended to be disinfected with 0.5% sodium hypochlorite using spray disinfection method for 10 min. Meanwhile, elastomeric impressions are strongly recommended to be disinfected with 0.5% sodium hypochlorite or 2% glutaraldehyde using immersion disinfection method for 10 min, however, polyether impression should be disinfected with 2% glutaraldehyde.


Assuntos
Desinfetantes , Hipoclorito de Sódio , Hipoclorito de Sódio/farmacologia , Glutaral/farmacologia , Desinfecção/métodos , Fatores de Tempo , Desinfetantes/farmacologia , Propriedades de Superfície , Silicones , Alginatos/química , Bactérias
17.
Acta Biomater ; 160: 87-97, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36812953

RESUMO

With the intensification of the aging population and the development of transcatheter heart valve replacement technology (THVR), clinical demand for bioprosthetic valves is increasing rapidly. However, commercial bioprosthetic heart valves (BHVs), mainly manufactured from glutaraldehyde cross-linked porcine or bovine pericardium, generally undergo degeneration within 10-15 years due to calcification, thrombosis and poor biocompatibility, which are closely related to glutaraldehyde cross-linking. In addition, endocarditis caused by post-implantation bacterial infection also accelerates the failure of BHVs. Herein, a functional cross-linking agent bromo bicyclic-oxazolidine (OX-Br) has been designed and synthesized to crosslink BHVs and construct a bio-functionalization scaffold for subsequent in-situ atom transfer radical polymerization (ATRP). The porcine pericardium cross-linked by OX-Br (OX-PP) exhibits better biocompatibility and anti-calcification property than the glutaraldehyde-treated porcine pericardium (Glut-PP) as well as comparable physical and structural stability to Glut-PP. Furthermore, the resistance to biological contamination especially bacterial infection of OX-PP along with anti-thrombus and endothelialization need to be enhanced to reduce the risk of implantation failure due to infection. Therefore, amphiphilic polymer brush is grafted to OX-PP through in-situ ATRP polymerization to prepare polymer brush hybrid BHV material SA@OX-PP. SA@OX-PP has been demonstrated to significantly resist biological contamination including plasma proteins, bacteria, platelets, thrombus and calcium, and facilitate the proliferation of endothelial cells, resulting in reduced risk of thrombosis, calcification and endocarditis. Altogether, the proposed crosslinking and functionalization strategy synergistically achieves the improvement of stability, endothelialization potential, anti-calcification and anti-biofouling performances for BHVs, which would resist the degeneration and prolong the lifespan of BHVs. The facile and practical strategy has great potential for clinical application in fabricating functional polymer hybrid BHVs or other tissue-based cardiac biomaterials. STATEMENT OF SIGNIFICANCE: Bioprosthetic heart valves (BHVs) are widely used in valve replacements for severe heart valve disease, and clinical demand is increasing year over year. Unfortunately, the commercial BHVs, mainly cross-linked by glutaraldehyde, can serve for only 10-15 years because of calcification, thrombus, biological contamination, and difficulties in endothelialization. Many studies have been conducted to explore non-glutaraldehyde crosslinkers, but few can meet high requirements in all aspects. A new crosslinker, OX-Br, has been developed for BHVs. It can not only crosslink BHVs but also serve as a reactive site for in-situ ATRP polymerization and construct a bio-functionalization platform for subsequent modification. The proposed crosslinking and functionalization strategy synergistically achieves the high requirements for stability, biocompability, endothelialization, anti-calcification, and anti-biofouling propeties of BHVs.


Assuntos
Bioprótese , Calcinose , Próteses Valvulares Cardíacas , Animais , Suínos , Bovinos , Glutaral/farmacologia , Glutaral/química , Células Endoteliais , Polímeros/metabolismo , Valvas Cardíacas , Calcinose/metabolismo , Pericárdio/química
18.
Photodiagnosis Photodyn Ther ; 41: 103242, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36528282

RESUMO

AIM: To assess the antimicrobial effect of ozone gas (OG) 0.1% riboflavin (RF), glutaraldehyde (GaH), and microwave irradiation (MI) on Polyvinyl siloxane impression material formerly colonized with E. coli, P. Aeruginosa, E. faecalis, and S.aureus and their effect on the physical properties MATERIAL AND METHODS: One hundred disk-shaped specimens (diameter 10 mm and thickness 3 mm) were developed by using polyvinylsiloxane impression material and inoculated by the American Type Culture Collection (ATCC) of E. coli, P. aeruginosa, E. faecalis, and S.aureus in an in-vitro setup. The samples were arbitrarily isolated into five groups and subjected for 3 min to the designated disinfection modality. Group 1 Control, group 2: GaH, group 3: 0.1% RF, group 4: MI, and group 5 OG. Following decontamination, the physical properties (contact angle, strain-in-compression, and tear strength) of impression materials were evaluated. Statistical analysis for CFU/mL (log10) for exposed E. coli, P. aeruginosa, E. faecalis, and S.aureus was performed by using analysis of variance (ANOVA) and Tukey's multiple comparison tests at a p-value of less than 0.05. RESULTS: The most effective antimicrobial efficacy for impression disinfection against all scrutinized microbial colonies were displayed by group 5 OG and the lowest disinfection effectiveness was unveiled by the control group with no treatment. The intragroup comparison revealed that impression disinfection with GaH, MI, and ozone corroborated analogous antimicrobial efficacy(p > 0.05). The disinfecting capacity of the impression material with 0.1% RF was significantly less than MI, GaH, and OG (p < 0.05). CONCLUSION: Disinfection of polyvinyl siloxane impression material with ozone gas, microwave irradiation, and glutaraldehyde demonstrated reasonable antimicrobial efficiencies against E. coli, P. aeruginosa, E. faecalis, and S.aureus with no detrimental effects on the physical properties of impression material. More studies are advocated to extrapolate the findings of the present study.


Assuntos
Anti-Infecciosos , Ozônio , Fotoquimioterapia , Desinfecção , Glutaral/farmacologia , Micro-Ondas , Ozônio/farmacologia , Escherichia coli , Propriedades de Superfície , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes
19.
J Contemp Dent Pract ; 24(11): 891-894, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38238278

RESUMO

AIM: The current study aimed to determine the impact of three different disinfectants on the surface roughness and color stability of heat-cure acrylic denture material. MATERIALS AND METHODS: Using a stainless-steel mold, disc-shaped wax patterns with dimensions of 10 mm in diameter and 2 mm thick (in accordance with ADA Specification No. 12) were created and prepared for a total of 75 acrylic samples. Dimensions of all 75 acrylic samples were checked with a digital Vernier caliper. About 25 samples of denture base material were immersed in three different chemical disinfectants: Group I: immersed in chlorhexidine gluconate solution, group II: immersed in sodium hypochlorite solution, and group III: immersed in glutaraldehyde solution. All samples were scrubbed daily for 1 minute with the appropriate disinfectant and submerged for 10 minutes in the same disinfectant. Between disinfection cycles, samples were kept in distilled water at 37°C. Color stability was measured using a reflection spectrophotometer. Surface roughness values were measured by a profilometer at baseline following 15 days and 30 days. RESULTS: After 15 days, the color stability was better in chlorhexidine gluconate solution group (4.88 ± 0.24) than sodium hypochlorite solution (4.74 ± 0.18) and glutaraldehyde solution group (4.46 ± 0.16). The mean surface roughness was less in glutaraldehyde solution group (2.10 ± 0.19), followed by chlorhexidine gluconate solution group (2.48 ± 0.09) and sodium hypochlorite solution group (2.64 ± 0.03). After 30 days, the color stability was significantly better in chlorhexidine gluconate solution group (4.40 ± 0.02), followed by sodium hypochlorite solution (4.06 ± 0.16) and glutaraldehyde solution group (3.87 ± 0.17). The mean surface roughness was significantly lesser in glutaraldehyde solution group (2.41 ± 0.14), followed by chlorhexidine gluconate solution group (2.94 ± 0.08) and sodium hypochlorite solution group (3.02 ± 0.13). CONCLUSION: In conclusion, the color stability was significantly better in chlorhexidine gluconate solution group than sodium hypochlorite solution and glutaraldehyde solution group. But the surface roughness was significantly lesser in the glutaraldehyde solution group, followed by the chlorhexidine gluconate and sodium hypochlorite solution group. CLINICAL SIGNIFICANCE: The maintenance of the prosthesis requires the use of a denture disinfectant; therefore, it is crucial to select one that is effective but would not have a negative impact on the denture base resin's inherent characteristics over time. How to cite this article: Kannaiyan K, Rakshit P, Bhat MPS, et al. Effect of Different Disinfecting Agents on Surface Roughness and Color Stability of Heat-cure Acrylic Denture Material: An In Vitro Study. J Contemp Dent Pract 2023;24(11):891-894.


Assuntos
Clorexidina/análogos & derivados , Desinfetantes , Hipoclorito de Sódio , Glutaral/farmacologia , Hipoclorito de Sódio/farmacologia , Resinas Acrílicas , Temperatura Alta , Polimetil Metacrilato , Dentaduras , Propriedades de Superfície , Bases de Dentadura , Teste de Materiais , Cor
20.
BMC Oral Health ; 22(1): 636, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564796

RESUMO

BACKGROUND/OBJECTIVES: Disinfection of surgical guides is mandatory for intraoperative use. Virgin Coconut Oil may be a potent alternative disinfectant; however, its effect has not been fully discussed in dentistry. The objectives of this study were to compare the morphological and the volumetric dimensional changes of 3D printed surgical guides after immersion in three disinfectants: 100%Virgin Coconut Oil, 2% Glutaraldehyde, and 70% Ethyl Alcohol and to assess the antimicrobial effectiveness of the tested disinfectants. MATERIALS AND METHODS: A surgical guide was designed using open platform software to print thirty guides and then cut them into two halves (N = 60). Pre-disinfection scans of the first half of the three study groups (n = 30) were performed using Cone-beam Computed Tomography, then immersed for 20 min in three disinfectants as follows: group VCO was immersed in 100% Virgin Coconut Oil, group GA was immersed in 2% Glutaraldehyde, and group EA was immersed in 70% Ethyl Alcohol. Post-disinfection scans of the first half of the three study groups (n = 30) were performed and then compared morphologically and volumetrically using an analyzing software program The second half of the three control groups (n* = 30) were soaked for 20 min in sterile distilled water as follows: group VCO*, group GA*, and group EA* for the assessment of the antimicrobial effectiveness of the three tested disinfectants. RESULTS: At the morphological assessment of the dimensional changes, group VCO were the most accurate with the lowest mean deviation value of 0.12 ± 0.02 mm and root mean square value of 0.12 mm, group GA and group EA were less accurate with mean deviation value of = 0.22 ± 0.05 mm and = 0.19 ± 0.03 mm and root mean square value of 0.22 and 0.20 respectively (p < 0.001). At the volumetric assessment, group VCO showed lower volumetric changes with a mean deviation value of 0.17 ± 0.10 mm, root mean square value of 0.19 mm, than group GA with mean deviation value of 0.23 ± 0.10 mm, root mean square value of 0.25 mm and group EA with mean deviation value of 0.27 ± 0.11 mm, root mean square value of 0.29 mm, however, no statistically significant differences were found between the three study groups (p = 0.10). The antimicrobial effectiveness of the three tested disinfectants showed a hundred percent (100%) reduction in the total microbial count in the first half of the three study groups treated with the three disinfectants revealing no bacterial growth, however, statistically significant differences were found between the second half of the three control and the first half of the three study groups. (p < 0.001). CONCLUSIONS: Virgin Coconut Oil showed higher morphological dimensional accuracy of the tested surgical guides than Glutaraldehyde and Ethyl Alcohol without causing any volumetric dimensional changes in the 3D printed surgical guides after disinfection for 20 min and the antimicrobial effectiveness was the same between the three tested disinfectants without showing any microbial growth.


Assuntos
Anti-Infecciosos , Desinfetantes , Humanos , Glutaral/farmacologia , Óleo de Coco/farmacologia , Desinfetantes/farmacologia , 2-Propanol , Etanol , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...